

EmoMap

Acquisition and Application of People's Affective Responses to Environments

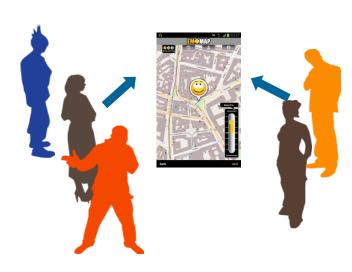
Haosheng Huang Vienna University of Technology, Austria

1. Introduction

- Humans perceive and evaluate environments affectively.
 - Unsafe places, attractive places, ...

- These affective responses to environments influence people's daily behavior and decision-making in space.
 - E.g., choosing which places to visit, which routes to take
 - We approach interesting and beautiful places, but avoid unsafe ones.
 - Subjective well-being

Research Project EmoMap


- Funded by Austrian BMVIT (Ministry for Transport, Innovation and Technology)
 - Partners: Salzburg Research, WildUrb

Aims:

- Acquisition of people's affective responses to environments
 - Mobile crowdsourcing via smartphones
 - Social media data analysis
- Applications of affective responses
 - Understanding people's experiences at and interaction with different environments
 - Enabling human-centered geospatial applications: e.g., "the most comfortable route" in navigation systems

2. Acquisition of affective responses

- Affective responses evoked by and in space
- How can affective responses be collected from a large number of people?
 - <u>Crowdsourcing</u> people's affective responses to space <u>via</u>
 <u>smartphones</u>
 - "human as sensors"
 - The increasingly use of GPS-enabled smartphones

- Affect-Location-Model: making affective responses to environments easily reportable
 - Affect: a two-level structure
 - Level of <u>comfort</u> (valence)
 - Level of affective environmental qualities: <u>safety</u>, <u>attractiveness</u>, <u>diversity</u>, and <u>relaxation</u>
 - Obtained from two empirical studies
 - Location
 - Location: Linking each affective response to its GPS location (Point data)

 An Android mobile app was developed based on the Affect-Location-Model.

Level of Comfort

safety, attractiveness, diversity, and relaxation

Other contextual information

- Promoting the app
 - Students
 - General people: via an urban walking community (WildUrb, http://www.wildurb.at/)
- 06.2012-12.2013, > 3500 contributions
 - ~ Most of the contributions are for the city of Vienna (Austria)

2.2 Identifying people's affective responses to the environment from social media data

• Social media data: Twitter, Flickr (photo descriptions),...

Photo description: "A beautiful church in Wien"

Photo description: Some really nice apartments

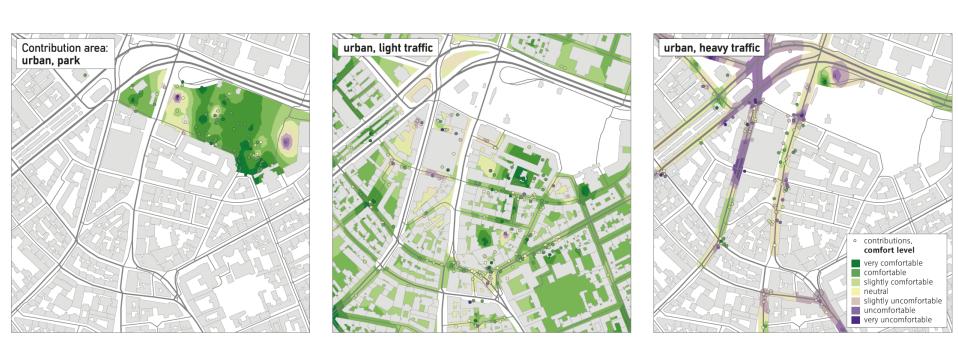
Photo description: "this is a stressful station"

- Sentiment analysis (natural language processing): determine valence (negative-positive) of the photo descriptions.
 - "This is a <u>lovely</u> and <u>beautiful</u> place" → Valence: 5 (positive)

2.2 Identifying people's affective responses to the environment from social media data (cont.)

Using Flickr metadata (photo titles, and photo descriptions)

3. Applications of affective responses


3. Applications of affective responses

Applications

- Case study 1: Impact of environmental characteristics on people's affective responses, e.g., Do humans really feel more comfortable in green areas?
- Case study 2: Navigation systems considering people's affective responses to environments, e.g., the most comfortable route

3.1 Impact of environmental characteristics

• Case study 1: Impact of environmental characteristics on people's affective responses

Participants feel <u>more comfortable</u> in natural and green areas than in built and heavy traffic environments.

3.2 Enabling smart human-centred geospatial applications

Route planning in navigation systems: e.g., the most comfortable route

Navigation systems considering people's affective responses to environments can provide more satisfying routing results.

EmoMap: Work in Progress

- A hybrid method
 - Mobile crowdsourcing
 - Social media data analysis
 - Technical sensors
 - Galvanic skin response (GSR)
 - Electrocardiogram (ECG)

- Impact of environmental characteristics on people's affective responses
 - "What makes people feel comfortable?" "Why do people feel uncomfortable at this place?"
- The political, social, and cultural implications of affective data
 - Correlate with other well-being statistics, ...
- Smart services: mobile city guides, location-based social networking, ...

Crowdsourcing and social media analysis

- Crowdsourcing and social media analysis are promising for studying people's affective responses to environment.
 - Social media provides rich new sources of population-level data on affect, and crowdsourcing (e.g., via smartphones or sensors) potentially allows researchers to collect information on individuals' affective responses.
 - Traditional surveys: expensive and time-consuming
 - Crowdsourcing allows researchers to gather huge amounts of data, cheaply and easily in a short period of time.
 - Mobile crowdsourcing is especially useful for collecting people's <u>subjective</u> information/opinions/experiences in the field (e.g., well-being, affective responses).

Challenges (1)

Motivating people

- Key to the crowdsourcing projects
- How to attract participants?
 - Provide (real or perceived) "benefits" for the contributors
 - Provide simple and intuitive ("easy-to-use") interface/tool

Data quality

- People contribute in an un-controlled setting .
- People's affective responses are subjective.
- No reference data are available for cross-checking.
- How can we deal with the data quality of the crowdsourced affective data?

Challenges (2)

Digital divide

- "A representative sample?"
- Mobile crowdsourcing can not completely replace traditional surveys.

Data interpretation

Limitations/bias brought by crowdsoucring tools and participants

Privacy

- People's affect data contain sensitive personal information.
- Anonymisation techniques don't always work.

Thank you!

Haosheng Huang

Research Group Cartography
Vienna University of Technology
http://cartography.tuwien.ac.at
http://tiny.cc/hhuang
haosheng.huang@tuwien.ac.at

